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Developed turbulent flows contain coherent vortices of various sizes, which play a 
major role in heat and mass transfer processes. We present here results of direct 
and large-eddy simullations LES focusing on the role played by these coherent 
vortices. We describe in detail the formalism of large-eddy simulations of turbu- 
lence, with a family of models developed on the basis of Kraichnan's eddy-viscosity. 
We see, for example, how longitudinal hairpin vortices are taken into account within 
these LES. We discuss vortex structure identification. Various results are presented 
concerning large-scale intermittency of a passive temperature and the role played 
by a stable-stratification to reduce this intermittency. We show numerical simula- 
tions of separated flows (backstep flow) with and without stratification, demonstrat- 
ing the ability for LES to deal with complex geometries. Finally, the influence of 
solid-body rotation on free-shear flows is investigated, showing drastic modification 
of the flow topology. 
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Large-eddy simulations: formalism 

Direct numerical simulations of turbulence (DNS) consist in 
explicitly solving all the scales of motion, from the largest I z to 
the Kolmogorov dissipative scale l D. It is well known from the 

R 3 / 4  statistical theory of turbulence that l t / l  D scales like t , where 
R l is the large-scale Reynolds number u' l t /v  based upon the rms 
velocity fluctuation u'. Therefore, the total number of degrees of 
freedom necessary to represent the whole span of scales of a 
three-dimensional 3-D turbulent flow is of the order of R 9/4 in 
three dimensions. With the computers presently available, the 
DNS are then limited to Reynolds numbers several orders of 
magnitude smaller than those encountered in the atmosphere, the 
ocean, or most of industrial facilities. To increase the Reynolds 
number in the simulations, it is necessary to introduce a subgrid- 
scale model representing the action of scales smaller than A x - -  
the computational mesh --- upon the explicitely resolved scales. 
The formalizm of the large-eddy simulations for incompressible 
flows is the following: consider a spatial filter G of width A x, 
which filters out the subgrid scales of wavelength < Ax. The 
filtered field is defined as follows: 

fa,(y, t)G(x - y) dy = f u i ( x  - y, t )G(y )  dy ~/(x, t)  

(1) 
and the subgridscale field is the departure of the actual flow with 
respect to the filtered field: 

U i = ~l i "a t- Uti (2) 
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Because of the commutative properties of the filter and the 
derivatives, the continuity equation a-ft//axj = 0 for the filtered 
field still holds. We now consider the incompressible Navier- 
Stokes equations within the Boussinesq approximation, in a 
frame rotating with constant angular velocity 13 about the x 3 
axis, and apply the filter G to the equations. It is obtained: 

aT a a ( # 
-~-tt + axj (l"-uu,) = - -  ~ K - -  + R/,~ 0xj 0xj ) 

(3) 

(4) 

T is the temperature, and ~ a filtered pressure including the 
geopotential; 13 is the fluid expansivity, taken equal to zero for 
passive scalar. Tq and Rij are the subgfid-scale transfers: 

T , j  = - u , . j )  (5) 

Rij = (~uuj - Tdjj) (6) 

Similarly to the Reynolds equations, an eddy-viscosity and 
eddy-diffusivity assumption is performed for modeling the sub- 
grid fluxes, namely: 

/ 0 ~ / + 0 ~ j /  1 
Tiy = V t I OXy-- -~Xi l "1" -.~ Ttt~ij (7 )  

aT 
R i j  = K t  a X j  (8) 

Here, we present several commonly used subgrid-scale mod- 
els. Most of these are based upon an analogous mixing-length 
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assumption consisting in writing v t ~ A x Vax , where Va = is a 
characteristic velocity scale of the motions of size = A x. Fur- 
thermore, the models generally depend upon one constant which 
can be analytically derived if it is assumed that the cut-off 
spectral wave number k c = ~ r / A x  is located within a Kol- 
mogorov kinetic energy cascade, so that: 

E(  k ) = CKE2/3k -5/3 (9) 

where E(k)  is the kinetic energy spectrum and C K is the 
Kolmogorov constant. 

Smagorinsky" s model 

The first of these subgrid models was proposed by Smagorinsky 
(1963) for numerical studies related to a two-layer quasi- 
geostrophic atmosphere. It consists in writing 

v, ~ Ax rag ~ ( A x ) 2 ~  = ( C s A x ) 2 S  '/2 (10) 

where VAx is a characteristic velocity difference on the computa- 
tional grid mesh, determined by the local strain 

S = 2 ~  axj+-~xiJt-g'-~xj+-~xi] (11) 

For ~ / A  x situated within a Kolmogorov cascade, it is obtained: 

G = ~- (g3/2) 

If the Kolmogorov constant is chosen equal to 1.4, which corre- 
sponds to a frequently measured value (see, e.g., Saddoughi and 
Veeravalli 1994), Equation 12 then gives C s = 0.18, assuming a 
strain ratio of unity. 

This model was used in particular by Deardorff (1970) and 
Moin and Kim (1982) for the channel flow (with C s = 0.1 and 
appropriate wall laws), and since then, in many of the large-eddy 
simulations of engineering flows. For 3-D isotropic turbulence, 
Smagorinsky's model (with C s = 0.18) behaves acceptably, al- 
though the kinetic energy spectrum decays faster than with the 
structure-function model (see M&ais and Lesieur 1992). How- 
ever, Smagorinsky's model is too dissipative in the presence of a 
boundary and does not work for transition in a boundary-layer on 
a flat plate, starting from a laminar profile to which a small 
perturbation is superposed. 

We now present other subgrid-scale models, based on the 
concept of Kraichnan's eddy-viscosity. 

Spectral eddy-viscosity models 

We assume that we work in the Fourier space, in the context of 
3-D isotropic turbulence. The filter consists in a sharp cut-off 
filter clipping all the modes larger than k c, where k c = ~r /Ax  is 
the cut-off wave number. The concept of k-dependent eddy- 
viscosity was introduced by Kraichnan (1976) for 3-D isotropic 
turbulence in the following way. If T>kc(k, t) is the kinetic 
energy transfer across the cutoff k c, corresponding to triadic 
interactions so that k < kc, p and (or) q > k c (see Lesieur 1990 
for details), one poses 

r>~c(k, t) 
v t ( k l k c )  2k2E(k ,  t)  (13) 

in such a way that the kinetic energy spectrum E(k, t) in the 
resolved scales (k ~< k c) satisfies: 

-~+2(v+vt (k lkc) )k  2 E ( k ,  t ) = T < k c ( k ,  t)  (14) 

where T< k (k, t) is the kinetic energy transfer corresponding to ,c resolved triads so that k, p, q <~ k c. The kinetic energy transfers 
can be derived from the Eddy-Damped Quasi-Normal Markovian 
(E.D.Q.N.M.) theory, one of the statistical closures of isotropic 
turbulence (see Lesieur). We assume first that k and k c lie 
within a Kolmogorov cascade, and k << k c. Then the transfer 
T> k (k, t) across k c can be analytically determined with the aid 
of e*xpansions in powers of the small parameter k / k  c. This 
yields: 

v•=o.a41CK3/2[ E ( k c  ) ]1/2 (15) 

L k c ]  
where E(k c) is the kinetic energy spectrum at the cutoff k c. For 
k close to k o T>, (k, t) has to be evaluated using the 
E.D.Q.N.M. approxirn~tion. It still scales on [E(kc ) / kc]  z/2 but 
with a coefficient rising rapidly in the neighborhood of k c (cusp 
behavior). Notice that the scaling by [E(kc ) / kc]  1/2 may be 
obtained by a mixing-length argument, where the eddy-viscosity 
is proportional to the product of kc 1 by the characteristic 
turbulent velocity v(kc). The latter is itself proportional to 
~ . The analysis also allows us to introduce a spectral 
eddy-diffusivity, with the same behavior as the eddy-viscosity 
(plateau and cusp), with a turbulent Prandtl number Pr t approxi- 
mately constant. Note that the latter varies with the adjustable 
constants of the E.D.Q.N.M. theory (see Lesieur). Chollet and 
Lesieur (1982) choose the constants so that Pr t = 0.6 in agree- 
ment with experimental measurements (see, e.g., Champagne et 
al. 1977). 

This spectral cusp eddy-viscosity may be used in large-eddy 
simulations performed in spectral space, provided the kinetic 
energy spectrum at the cutoff can be determined. Good results are 
obtained for decaying isotropic turbulence (see Lesieur and Ro- 
gallo 1989; M~tais and Lesieur 1992). The model works well 
even if the large scales are not isotropic, as was shown by M&ais 
and Lesieur and Batchelor et al. (1992) for stably stratified 
turbulence. It gives also interesting results for temporal mixing 
layers, in terms of Kelvin-Helmholtz vortices dynamics, stretch- 
ing of hairpin vortices, and helical pairings (Silvestrini et al. 
1995). 

However, such an eddy-viscosity is difficult to employ if we 
want to work directly in physical space, when the geometry of 
the problem prevents spectral methods to be used. An alternative 
method is to define an average spectral eddy-viscosity, using 
energy conservation arguments: 

fokC2v~( t )k2E(k ,  t)  dk = ¢( t )  (16) 

It yields (see M6tais and Lesieur 1992) 

= 2 C - 3 / 2 [  E ( k c )  ]l/2 (17) 
", 3 "  [k J 

This is, in fact, very close to Smagorinsky's model and to the 
model proposed by Yakhot and Orszag (1986) on the basis of a 
mixed E.D.Q.N.M./Renormalization Group (RNG) theory. 

Structure- function mode/ 

This model, from M6tais and Lesieur (1992), is an attempt to use 
the spectral eddy-viscosity in physical space, while taking into 
account the intermittency of turbulence. The eddy-viscosity given 
by Equation 17 can be determined locally in physical space, if a 
local kinetic energy spectrum Ex(kc),  with k c = I r /A  x can be 
defined. This can be done using the local second-order velocity 
structure function 

ff2(X, AX, t ) =  (I lu(x,  t ) - u ( x + r ,  t) ll2)llrll=Ax (18) 
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For a uniform grid, the average is done on the six closest points 
surrounding x on the computational grid. A 4-point version can 
also be used when there are preferential planes in the flow; for 
example, planes parallel to boundaries in a channel or a boundary 
layer. If the grid spacing is not uniform, extrapolations can be 
performed using the fact that, in a 3-D Kolmogorov cascade, the 
second-order velocity structure function between two points a 
distant r apart scales like r 2/3. Using isotropic turbulence rela- 
tions, such as 

( s in(kAx)  ) kAx ff2(x, Ax,  t ) =  4fokCe(k ) 1 dk 

it is obtained within a Kolmogorov spectrum 

v,(x, Ax, t)=O.105C;(3/2Ax[F2(x, hx,  t)] 1/2 (19) 

Notice that in the limit &x ~ 0, and for a regular mesh, we can 
write: 

!Ax2[Oui~[Oui~ 1 . . . .  1/2 
ff2(x, Ax,  t ) =  3 / //)~0xj]-~x i = ~ A x q S + ~ J  

(20) 

where S is defined by Equation 11 and m is the large-scale 
vorticity vector. Equations 19 and 20 yield: 

0.105 3 2 2 - 
llt(x , Ax, t)  = ----~--C;i / Ax [S + ~]1/2.~ (21) 

Noticing that 0.105 C~ 3/2 = 2C 2 (C s Smagorinsky's constant), 
we finally obtain 

V ~  2- -- . 1 /2  vt(x, Ax,  t)  --- (C,:Ax) [S + ~ 1  (22) 

As compared to Smagorinsky's model, the turbulent viscosity 
given by the structure function model acts more in regions of 
high vorticity and low strain. Conversely, its action is less 
pronounced in regions of high strain and low vorticity. 

This model works very well for isotropic turbulence, where it 
gives a good Kolmogorov spectrum at the cutoff. This is shown 
in Figure 1, displaying the compensated kinetic energy spectrum 
e-2/3kS/3E(k, t) in a decaying isotropic LES, at a resolution of 
963. the compensated spectrum is fairly constant (with a Kol- 
mogorov's constant C K of 1.4) from k = 10 to k = 40. In the 
same figure, we have reported the pressure spectrum Epp, com- 
pensated according to Batchelor's law 

Epp(k, t) = Cpe4/3k -7/3 (23) 

This law can be obtained using the quasinormal approximation 
for the determination of the second-order moment for pressure 
(/3(k)/3(k')). The constant C e was calculated by Monin and 
Yaglom (1975). They found Cp = aC E with 

7 [ 2 7 )  2 
c~ = 3"1 ~ ' ]  F ' ( - - T )  =" 1.32 (24)  

In the figure, there is a tiny plateau of the compensated pressure 
spectrum at the right value C e corresponding to C K = 1.4. Higher 
resolution computations should be performed to investigate the 
nature of the pressure spectrum within the inertial range of 3-D 
isotropic incompressible turbulence. 

The structure-function model gives also interesting results for 
free-shear flows (see the wake of Figure 5), and backstep flow 
(see Figures 8 and 9). It works well also for rotating turbulence 
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Figure I LES (structure-function model) of decaying turbu- 
lence; compensated kinetic energy and pressure spectra (from 
M6tais and Lesieur 1992) 

(see Bartello et al. 1994). It permits, within the 4 point formula- 
tion, simulation of the transition on a periodic flat plate at Mach 
4.5 (see Ducros et al. 1993). However, it still does not work for 
transition on a wall at low Mach, because the eddy-viscosity 
reacts to the presence of TS waves enough to prevent them from 
developing into turbulence. 

Selective and filtered structure-function models 

The selective structure-function (SSF) model was developed by 
David (1993) (see Comte et al. 1994; Lesieur and M6tais 1995 
for details). The idea is to switch off the eddy-viscosity when the 
flow is not 3-D enough. The three-dimensionalization criterion is 
the following: measure the angle between the vorticity at a given 
grid point and the average vorticity at the six closest neighboring 
points (or the four closest points in the 4-point formulation). If 
this angle exceeds 20 ° , the most probable value according to 
simulations of isotropic turbulence at a resolution of 323 ~ 643, 
the eddy-viscosity is turned on. Otherwise, there is only molecu- 
lar dissipation which acts. This model works very well for 
isotropic turbulence and free-shear flows. We will show below an 
application to a stably stratified flow above a backward-facing 
step. 

The SSF model was also used to simulate a compression ramp 
at Mach 2.5 by David (1993). The SSF simulations predicted the 
existence of longitudinal G6rtler-type vortices. 

In the filtered structure-function (FSF, see Ducros et al. 1993; 
see also Comte et al. 1994; Lesieur and M&ais 1995), the filtered 
field h i is submitted to a high-pass filter in order to get rid of 
low-frequency oscillations which affect the local kinetic energy 
spectrum E(k c) in Equation 17. The model works well for both 
isotropic turbulence and transition in a spatially developing 
boundary layer. 

Dynamic models 

This class of models, still in progress, is based on Germano's 
(1992) work (see also Germano et al., 1991 and Lesieur and 
M&ais 1995, for a review). A new filter ( . )  (called the test filter, 
generally of width 2Ax)  is applied to h, giving a "test-field" 
(h) .  The evaluation of the energetic transfers between the test 
field and h, based on the so-called Germano's identity, permits 
us in principle, to recalculate a time-varying Smagorinsky's 
constant C = C 2 which is local in space. However, the problem 
is ill-conditioned, since C is given by a tensorial equation 
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yielding five equations for one unknown. This is why, in the 
channel-flow simulations carried out in Germano et al., they have 
to average C in planes parallel to the boundary. Good results are 
thus obtained. To remove the singularity, Lilly (1992) proposed 
to evaluate C by variational techniques, via a least-square ap- 
proach. However, this yields many negative values for C(x, t), 
which rapidly lead to computational instability. The cure often 
adopted to deal with this problem consists in averaging over 
direction of flow homogeneity. For example, Germano et al. and 
Piomelli (1993) obtained very good results by averaging in 
planes parallel to the walls in their channel flow simulation. Note 
that the use of Smagorinsky's model as a base for the dynamic 
procedure is not compulsory, and any of subgrid-scale models 
can be a candidate. As example, Zang et al. (1993) have success- 
fully utilized this procedure to the scale-similarity model pro- 
posed by Bardina et al. (1980). More recently, EI-Hady and Zang 
(1995) have shown that the "dynamic" structure-function model 
yields better results than the "dynamic" Smagorinsky model in 
transitional compressible boundary layer. 

An approach having similarities with the dynamic model 
procedure has been proposed in spectral space (Lesieur and 
Rogallo 1989): an LES of decaying isotropic turbulence using the 
spectral eddy-viscosity (with cusp) was carried out, with a cutoff 
k c. Then the explicit transfers across kc/2,  added to the mod- 
eled transfers across kc, permitted to recalculate the constants of 
the model (level of the plateau and shape of the cusp). Unfortu- 
nately, the method, once iterated, did not converge. 

C o h e r e n t  vor t ices  ident i f icat ion 

It is now well accepted that developed turbulent flows contain a 
lot of coherent vortices of various sizes, which play a major role 
in all heat and mass transfer processes. These vortices, which 
correspond to local concentrations of vorticity to = V × u in 
space, are present in isotropic 2- and 3-D turbulence, and in 
free-shear flows such as mixing layers, wakes, jets, and separated 
flows. They can also be found in flows close to boundaries, such 
as boundary layers, channel flows, or pipe flows. To define a 
coherent vortex, we think it is important to include the notion of 
time evolution. 

We consider at some time a region of space with a local 
concentration of vorticity ¢o. This region is supposed to move at a 
velocity U¢. It will be said to be a coherent vortex if it exhibits 
a distinctive shape and if it has a life time T¢ much larger than 
the local turnover time within the eddy, to -1 (say, = 5t~-1). We 
follow the isolated vortex in a Galilean frame moving with a 
constant velocity of the order of U c. Consideration of the order of 
magnitude of the different terms of the equation of motion (in the 
constant-density case, and neglecting viscosity) shows that the 
vorticity to, the velocity u (induced by the vortex), and the 
generalized dynamic pressure P satisfy, in a coherent vortex, the 
cyclostrophic balance 

1 
¢0 × u = - _~rp (25) 

P 

This shows that the pressure gradient is oriented toward the 
exterior of the vortex: the center of the coherent structure is a 
pressure trough. 

The fact that low-pressure regions are good indicator of the 
coherent vortices is revealed through examination of the pressure 
probability density function (pdf). Figure 2 shows the pressure 
pdf as given by a direct numerical simulation of decaying 3-D 
isotropic turbulence at a resolution of 1283. The pdf exhibits a 
very asymmetric shape, with an exponential fit in the lows. 
Conversely, the high pressure one is very close to Gaussian. This 
is a clear signature of highly concentrated coherent vortices: the 

10 -2  

10-4 

10-6  

- 8  - 4  0 4 

Figure 2 DNS of 3-D decaying turbulence; pressure probabil- 
ity density function compared to a Gaussian distribution of 
same variance (dots) 

flow is composed of very localized regions of strong depression. 
Concentrated low-pressure structures are still present in large- 
scale simulations of 3-D isotropic turbulence (see Mrtais and 
Lesieur 1992). In that case, the low-pressure regions are better 
indicators of the coherent vortices than the high-vorticity regions, 
which are very scattered. Similarly skewed pdf have been ob- 
served in the direct numerical simulations of mixing layer per- 
formed by Comte et al. (1992). These have also been measured in 
experimental swirling turbulent flows. 

We now consider the effect of a solid body rotation of angular 
velocity 1). In this case, the coherent vortex satisfies 

1 
( to  + 2 1 ) )  X u = - _ ~ r p  ( 2 6 )  

P 

If rotation 1) is fast, which can be measured in terms of the local 
Rossby number Ro << 1, with 

(l) 

R o = ( 2 7 )  

Equation 26 is approximated by the geostrophic balance 

1 
21) × u = - - V P  (28) 

P 

which replaces the previous cyclostrophic balance. In this case, 
cyclonic vortices (of vorticity parallel and of same sign as 1)) 
will correspond to pressure lows, while anticyclonic vortices will 
be pressure highs. 

Therma l  i n t e r m i t t e n c y  

Here we present results of LES and DNS of 3-D isotropic 
turbulence convecting a passive scalar ("temperature") at a 
resolution of 1283 . We have also examined the case of the 
nonpassive temperature in the presence of stable stratification. 

In the isotropic case (with a passive temperature), we found 
that the temperature exhibits several anomalous characteristics, 
as compared with the predictions of classical theories. Figure 3 
shows the kinetic energy and temperature spectra obtained after 
several (60) large-eddy turnover time in a large-eddy simulation 
using the previously described Kraielman spectral-cusp e d d y -  
viscosity and eddy-diffusivity (turbulent Prandtl number of 0.6). 
Initially (t = to), both velocity and temperature are independent 
Gaussian fields with identical spectra. 
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Figure 3 LES of 3-D decaying turbulence; kinetic energy spec- 
trum E(k) and passive-temperature spectrum Er(k) after 60 
large-eddy turnover times (from M6tais and Lesieur 1992). 

Figure 3 shows that the temperature has decayed much faster 
than the kinetic energy, with a peak migrating faster toward low 
wavenumbers. The kinetic energy spectrum at the cutoff is close 
to k -5/3, with a Kolmogorov constant, measured from the 
compensated spectrum kS/3E(k), of the order of 1.5. However, 
the kinetic energy seems somewhat constrained by k c, resulting 
in a slope close to k -2 in the vicinity of k¢. The temperature 
spectrum agrees quite well with Corrsin-Oboukov's law Er(k)  

"qE-1/3k -5/3 at the cutoff (where "q is the temperature vari- 
ance dissipation rate), with a constant equal to 0.9. However, the 
most striking feature of this spectrum is the formation, for 
k < 30, of a range close: to a k-1 power law (see M4tais and 
Lesieur 1992; Lesieur and Rogallo 1989). Afterwards we con- 
sider the thermal 3-D structures. It is well known, since the work 
of Siggia (1981) (see also She et al. 1990; Vincent and Meneguzzi 
1991; M6tais and Lesieur), that coherent vortices exist in 3-D 
isotropic turbulence. They have the form of thin elongated tubes 
of high vorticity and low pressure. In our DNS, we find that the 
length of such vortices is of the order of the integral scale of 
turbulence l, while their diameter seems to scale on Taylor's 
microscale, and their respective distance is = 2l. We have 
checked (see M4tais and Lesieur) that the high-temperature fluc- 
tuations are strained in the "bra id"  region between the coherent 
vortex tubes. The same occurs in 2-D turbulence where the 
temperature is strained between the large coherent vortices. In the 
inertial-convective range of 2-D turbulence, the kinetic energy 
spectrum is a k -3 (enstrophy cascade), while the temperature 
spectrum is proportional to the enstrophy spectrum, and therefore 
cx k -1 (see Lesieur and Herring 1985). In Lesieur and Rogallo 
(1989), the large scale k -1 range was explained assuming that 
the temperature flux ~1 was controlled by the rate e/u 2 (u rms 
velocity) imposed by the shear in the energetic scales: ~q ~ 
Er(k)~/u 2 (Er(k) temperature variance spectrum). This is ex- 
actly a 2-D inertial-convective argument in the enstrophy cas- 
cade, where the shearing rate is constant and equal to 131/3(13 is 
the enstrophy dissipation rate, see Lesieur 1990). 

As in 2-D turbulence, the large-scale intermittency will be 
responsible for the highly uon-Gaussian pdf of the vorticity. 
Since high concentrations of temperature are in between the 
vortices, it is natural to expect that the temperature pdf at large 
amplitudes will follow the vorticity. Therefore, we have exam- 
ined the pdf for both velocity and temperature fields and their 
derivatives after 17 large-eddy turnover times (DNS and LES). 
We introduce the skewness (S) and flatness factors ~F) of the 

2 3 / 2  4 2 distribution f: SI= ( f : ) / ( f  > ,FI= ( f  > / ( [  ) .  As ob- 
served in grid turbulence experiments, the velocity pdf is close to 
Gaussian (S~ = 0; F~ --~ 3). However, T exhibits near exponential 

ranges in the wings of its distribution (see Figure 4): the tempera- 
ture-variance flatness is 4. As previously mentioned, this depar- 
ture from Oaussianity for the temperature fluctuation pdf indi- 
cates a large-scale intermittency. Indeed, the temperature presents 
very strong fluctuations in small spatial regions, with quiescent 
regions being more likely the result of random sampling• Pro- 
nounced exponential tails for the pdf of the passive temperature 
fluctuations have been observed experimentally by Jayesh and 
Warhaft (1992). However, this intermittent behavior was only 
observed in the presence of a nonzero mean temperature gradient. 
In the absence of gradient, the experimental temperature pdf are 
close to Gaussian. This apparent discrepancy between the present 
numerical results and the experimental observation is still an 
open issue. Small-scale intermittency is illustrated by the distribu- 
tions of the velocity and temperature derivatives (see Figure 4, 
for OT/Ox 3 pdf). The departure from Oanssianity for the tempera- 
ture derivative is more pronounced than for the velocity: FaT/ax3 
= 5.47 when Fau/a x = 4.59. Larger values for the temperature 

• . 3 . 

derwatlve flatness, as compared with the velocity derivative 
flatness, are in good agreement with experimental measurements 
(Antonia et al. 1978; Sreenivasan et al. 1980). 

Let us now consider a temperature no longer passive, but 
coupled to the velocity field by the presence of a mean stable 
temperature profile ([3 =~ 0 in Equation 3). We assume that the 
Brnnt-V~iis~il~i frequency N (N 2 proportional to the mean tem- 
perature profile) is constant• We also assume that the isotropic 
subgrid-scale modeling of momentum and temperature used for 
the passive scalar case is still valid in the stratified case, provided 
that turbulence should not depart too much from isotropy for 
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Figure 4 Probability density function P(X): (a) X =  T; (b) X =  
OT/axs; large eddy-simulation: dots; direct simulation: continu- 
ous line; dashed line corresponds to a Gaussian distribution of 
same variance (from M(~tais and Lesieur 1992) 

Int. J. Heat and Fluid Flow, Vol. 16, No. 5, October 1995 319 



Coherent vortices in turbulence: O. M~tais and M. Lesieur 

10 - 2  

10 -4 ,  

• 11 1 0 - 6  1 

- 8  - 4 0 4 8 

Figure 5 Probability density funct ion of  aT-/ox 3, stably strati- 
f ied direct simulation: t = 1.233 N - l ;  dashed line corresponds to 
a Gaussian distribution 

by Equation 10 with C s = 0.18 (Figure 6c). For each case, we 
visualize an isosurface of the vorticity modulus: to = 0.5toi (toi is 
the vorticity maximum associated with the initial mean velocity 
profile) at time t = 7 6 r m / U  m. The length of the computational 
domain is twice the most amplified wavelength predicted by the 
linear-stability analysis: the Karman-street consists of two pairs 
of alternate sign vortices (see Figure 6a). At low Reynolds 
number (Figure 6a), the Karman rolls exhibit some oscillations in 
the span-wise direction but the longitudinal vorticity component 
remains small with respect to the span-wise one ( =  10%). The 
three-dimensionality is greatly enhanced in the case of large-eddy 
simulations. Figure 6b shows that the primary vortices of the 
Karman street are still present but vortex stretching leads to the 
formation of intense counter-rotating vortices between the span- 

k > k c. We focus on weakly stratified turbulence for which the 
initial Froude number is not small (F r = 1.3) and whose statistical 
kinematic properties are almost unchanged as compared to the 
passive temperature case. Due to the coupling, the temperature 
spectrum has lost the anomalous character it had in the passive 
case and looks quite similar to the kinetic energy spectrum with a 
behavior close to k -5/3.  Furthermore, both velocity and tempera- 
ture fluctuations pdf now exhibit a Gaussian behavior (see M6tais 
and Lesieur 1992). This indicates the disappearance of large-scale 
temperature intermittency. Figure 5 shows the pdf for ~T/ax3(T 
temperature deviation from the mean temperature profile) ob- 
tained in a direct Boussinesq simulation at Pr = 1 and F r = 1.3 
(see M&ais and Lesieur, for details). The pdf exhibits a very 
asymmetrical shape with a skewness factor of 1.027. This is 
confirmed by the experimental data of Thoroddsen and Van Atta 
(1993). A.possible explanation is that locally large negative 
values of ~ T / ~ x  3 are convectively unstable and, therefore, rapidly 
destroyed by buoyancy forces; whereas, large positive values 
enhance stability and, therefore, tend to persist. 

Free-shear flows 

Plane wake: temporal growth 

We first assume periodicity in the stream-wise direction (tem- 
poral hypothesis) and in the span-wise direction. The initial 
conditions consist of a Gaussian mean velocity profile: 

~ ( y )  =Um exp - ( l o g  2) (29) 

where r m is the half deficit velocity width, to which a low-ampli- 
tude random perturbation is superposed. The latter results from 
the superposition of two random perturbations: the first one is 
2-D (independent of the span-wise direction) of kinetic energy 
~;eU~, and the second one is 3-D of kinetic energy e3eU~, with 
eEe = 10-4 and %e = 10-s. The initial perturbation is therefore 
quasibidimensional. The resolution is 48 X 48 X 48 collocations 
points (pseudospectral method). 

We compare the coherent vortices respectively obtained in a 
direct numerical simulation (Figure 6a) at Reynolds R~ = 
U , , r , J v  = 200, and in large-eddy simulations using various sub- 
grid-scale models (no molecular viscosity). The initial conditions 
are identical in all cases. We have successively considered the 
structure function model given by Equation 19 in the 6-point 
formulation (Figure 6b), the classical Smagorinsky model given 

(b) 

(c) 

Figure 6 Vort ic i ty modu lus  isosurface to = 0.5~i at t =  
76rrn/Um: (a) direct numer ical  s imulat ion at Re=  Umrm/v= 
200; large-eddy simulations; (b) structure-function model; (c) 
Smagorinsky's model with C s = 0.18 
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ing Karman vortices. This stretching is more intense than in the 
temporal case, and the longitudinal vorticity maximum is tom~x = 
4toi. A question arises concerning the relevance of these predic- 
tions with respect to actual wakes. An answer will be possible 
when sufficiently reliable experimental data concerning longitudi- 
nal vorticity exist. Computed statistics also need to be compared 
to measurements. 

Figure 7 Large-eddy simulation of a spatially developing plane 
wake: structure-function model; vorticity modulus isosurface 
to = 90%~o i (from Gonze 1993) 

wise ones. These longitudinal structures are located within the 
braids connecting consecutive Karman vortices of antiparallel 
vorticity. At that time, tomax = 2.22toi, where tomax is the maxi- 
mum intensity of the longitudinal vorticity component. We have 
checked that both the primary Karman vortices and the secondary 
longitudinal hairpin wJrtices correspond to pressure lows. 
Smagorinsky's model turns out to be more dissipative than the 
structure-function model leading to slightly lower values for the 
longitudinal vorticity component (to max = 2.13 to i; see Figure 6c). 
It is important to note that the LES preserve both the coherence 
of the Karman rollers and the thin longitudinal hairpin vortices 
whose diameter is close to the mesh size. 

Plane wake: spatial growth 

We have developed a 3-D numerical code combining, for the 
space derivatives computation, high-order difference schemes in 
the longitudinal direction and pseudospectral methods in the 
span-wise and shear directions. Compact difference schemes at 
the sixth order are used (Lele 1992). Their precision is close to 
spectral methods. This code allows us to simulate a spatially 
growing wake numerically, which is closer to experimental con- 
figurations. 

Figure 7, taken from Gonze (1993), shows such a calculation 
using the structure function model (6 points). A deficit velocity 
profile steeper than Gaussian is imposed at the inflow to simulate 
a near-wake. We superpose small 3-D random perturbation (e3D 
= 10-4). The resolution is nx, ny, n x = 250, 80, 48. Figure 7 
visualizes the vorticity modulus to = 90%toi, where toi is the 
vorticity maximum associated with the mean velocity profile at 
the inlet. We still observe longitudinal stretching of hairpin 
vortices in the deformation field induced between counter-rotat- 
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Figure 8 Schematic side view of the backward-facing step 

w 

Separated flows: backward-facing step 

Here we focus on LES of a backward-facing step flow. The 
simulations use a finite-volume code (TRIO code) developed 
originally at the Atomic Energy Agency (CEA) in its center of 
Grenoble, for industrial modeling purposes. The code has been 
used at a high Reynolds number (Silveira-Neto et al. 1991, 1993) 
in a large-eddy simulation using the structure-function model 
(6-point formulation). Figure 8 shows a schematic side view of 
the apparatus. Let W / H  be the aspect ratio, W being the channel 
height at the exit and H the step height. The Reynolds number is 
here UH/v, where U is the velocity at the inlet. 

In the case of a"high" step (aspect ratio of 1.25) and at a 
Reynolds number of 6,000, we find 2-D spiral eddies which 
stretch longitudinal hairpin vortices of vorticity = 0.4 tomax" This 
is shown in Figure 9a at t = 130H/U and on Figure 9b at 
t=  138H/U taken from Silveira-Neto et al. (1993). In this 
simulation, the resolution is 130 × 25 × 40. The incoming flow, 
supposed uniform, separates downstream of the step (left of the 
figure), and the resulting vortex sheet rolls up into Kelvin- 
Helmholtz billows which travel downstream and pair. The yellow 
and green filaments indicate the positive and negative longitudi- 
nal vorticity, corresponding to the stretched hairpin filaments. 

A span-wise section of these vortices yields a typical mush- 
room-like structure, analogous to what had been observed experi- 
mentally and numerically in mixing layers. In fact, calculations at 
longer times and higher resolution show that the flow evolves 
eventually towards highly distorted Kelvin-Helmholtz billows 
more of the helical pairing type (see Comte et al. 1992), with 
weak A-shaped vortices shed downstream (Fallon 1994). 

In the "low"-step case (aspect ratio 2.5, Reynolds 38,000), 
we present also a LES using the structure-function model. 
Visualizations of the vorticity field indicate the presence of 

(a) 

(b) 

Figure 9 Span-wise and longi tudinal  vort ic i ty in a 
backward-facing step f low simulation using the structure- 
function subgrid-scale model; high step (from Silveira-Neto et 
al. 1993): (a) t =  130H/U; (b) t =  138H/U 
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Figure 10 LES (with the structure-function model) of a back- 
step flow; low step, top view of the low-pressure field (from 
Silveira-Neto et al. 1993) 

intense longitudinal vortices. However, the low-pressure field 
shows large depressions which might undergo some sort of 
helical pairing (see Figure 10). In these simulations at high 
Reynolds number, the reattachment length is equal to eight step 
heights, in very good agreement with the experiments. On the 
contrary, classical industrial models such as the K - e  model 
underestimate seriously this quantity, with a prediction of 6. 
Other statistics such as pressure coefficients and mean velocities 
compare also well with the experiments. The variances of the 
velocity components and the Reynolds stresses are also in good 
experimental agreement. In fact, in Silveira-Neto et al. (1993), 
these data were erroneously extrapolated assuming a subgrid 
Kolmogorov kinetic energy spectrum. Such a spectrum may 
occur only in the mixing layer close to the step, but not in the rest 
of the flow. 

Stably strat i f ied case 

We have applied the structure-function (SF) and the selective 
structure-function (SSF) models to the backward-facing step 
(high-step case of aspect ratio 1.25) in a stably stratified medium 
at a Reynolds number 48,000 (see Fallon 1994 for details). The 
stratification is obtained by imposing a discontinuous temperature 
profile at the inlet above the step, so that: T = T 2 for H ~< y ~< H 
+0.2h,  and T = T 1 for H + O.2h <~ y <<. W, with TI > T 2 (see 
Figure 8). The parameter characterizing the stratification strength 
is the global Richardson number defined as: 

R,  = f~gH(r~ - r2) /Uo ~ (30) 

A parametric study by varying R i has first been done with the SF 
model. In the weakly stratified case (R i < 0.25) the coherent 
vortex topology is analogous to the isothermal case. When the 
stratification is increased (R i = 0.5), the flow is two-dimensional- 

ized upstream, with quasi-2-D Kelvin-Helmholtz vortices shed 
downstream of the step. Further downstream, however, they still 
undergo some highly 3-D pairing. The reattachment length is 
notably increased. Furthermore, the stretching of longitudinal 
hairpin vortices is strongly reduced. For R i = 0.7, the mixing 
layer becomes purely 2-D, and the pairing is inhibited. The 
expansion rate of the mixing layer is dramatically reduced, and 
the reattachment length has become infinite. At R i = 1, a very 
stable density interface forms, without any roll up. 

To compare the SF and SSF models, we performed with the 
latter a simulation at R i = 0.7. In fact, things are very different. 
Figure 11 shows the SSF simulation: vortices form immediately 
downstream of the step, and undergo several pairings. We can 
also observe baroclinic formation of smaller vortices in the 
braids, as had been found by Staquet (1991) in DNS of temporal 
stratified mixing layers. It is clear in these calculations that the 
SSF model treats 2-D instabilities better, since it has no influence 
on them. Therefore, it should be closer to reality than the SF 
model. This indicates that the SF model is too dissipative for 2-D 
vortices. 

Rotating flows 

Turbulent or transitional shear flows in a rotating frame play an 
important role in many geophysical and engineering applications. 
In these flows, the Rossby number (characterizing the relative 
importance of inertial over Coriolis forces) varies importantly. 
Typical values of the Rossby number are = 0.05 in the mesoscale 
oceanic eddies, = 0.3 for the large synoptic atmospheric pertur- 
bations, and = 2.5 for the atmospheric wake of a small island. 
Rotating turbulence finds numerous industrial applications in 
turbomachinery: the turbulent characteristics of the flow in blade 
passages of radial pumps and compressor impellers determine the 
efficiency of these devices. Turbulence is also of great impor- 
tance for cooling by fluid inside the blades. Depending upon the 
magnitude of the radial velocity, the Rossby number within 
rotating machines can range from values close to unity to very 
small values ( = 0.05). 

Here, we consider a shear flow (free-shear or wall-bounded) 
of basic velocity, fi = (~, 0, 0) (x, y, and z are, respectively, the 
longitudinal, shear, and span-wise directions). We work in a 

i T e m p e r a t u r e  C U T  

i s o  M W  = 2 . 2  U 0 t H  

M W  C U T  

t *  = 8 0 . 0  H / U O  

Figure 11 LES (with the SSF model) of a backstep flow in a stably stratified medium; high step (W/H= 1.25); Ri = 0.7, vorticity and 
temperature (from Fallon 1994) 
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frame rotating with a rotation vector I I  = (0, 0, l l )  oriented 
along the span (positive or negative). The vorticity vector associ- 
ated with the basic velocity profile to = (0, 0, - d u / d y )  can be 
parallel or antiparallel to I I .  We refer to the first case as the 
cyclonic case, while the second is called anticyclonic. In rotating 
channel flows, the cyclonic and anticyclonic wails are called, 
respectively, suction and pressure sides or trailing and leading 
sides. The effects of rotation on shear flows are drastically 
different depending on its cyclonic or anticyclonic nature. Labo- 
ratory experiments have shown that cyclonic rotation has always 
a two-dimensionalizing effect. On the cyclonic side of channel 
flow, as compared to the nonrotating case, the turbulence energy 
production decreases with increasing rotation rate, and fast rota- 
tion can lead to the total suppression of turbulent transition. 
Conversely, the anticyclonic side is destabilized (three-dimen- 
sionalized) for moderate rotation rates (high enough Rossby 
numbers). Destabilization and stabilization effects are also ob- 
served in such rotating free-shear flows as mixing layers, wakes, 
and jets. 

Here, we concentrate on the rotating mixing layer and show, 
through DNS, how the rotation modifies the 3-D flow topology. 
The reader is referred to Lesieur et al. (1991), M&ais et al. 
(1992) and M&ais et al. (1995) for more details. A solid body 
rotation does not influence a 2-D flow in a plane perpendicular to 
the rotation axis, in the sense that the Coriolis force is then 
proportional to the gradient of the stream function and may be 
included into the pressure gradient. Therefore, the phenomena 
observed in the laborato:ry experiments can only be explained by 
considering the influence of rotation on the growth of 3-D 
perturbations. 

We consider a temporal mixing layer associated with an 
hyperbolic-tangent basic: velocity profile: h ( y ) =  U o tanhy/~ 
where 2U o is the velocity difference across the layer, ~i  = 25 
being the initial vorticity thickness. The Rossby number is based 
on the basic vorticity at the inflection point: R~ ) = - U o / 2 [ 1 8 .  
R~ ) is positive for cyclonic rotation (U 0 and fl  of opposite sign) 
and negative for anticyc'~lonic rotation. 

To describe the early stage of the flow development, a 3-D 
linear-stability analysis of planar free-shear flows has been car- 
ried out by Yanase et al. (1993). For cyclonic rotation and for 
strong anticyclonic rotation, it was found that the flow was 
two-dimensionalized, and the instability diagram in the kx, k~ 
plane concentrated around the Kelvin-Helmholtz mode (which is 
not affected by the rotalion). For moderate anticyclonic rotation 
R(~ ) < - 1, and in addition to the Kelvin-Helmholtz instability, a 
new instability was discovered consisting of the strong amplifica- 
tion of a purely longitudinal mode. 

This linear analysis is, however, limited, since high ampli- 
tudes soon develop, and nonlinear interactions develop. In this 
regime, Lesieur et al. (r991) have emphasized the importance of 
absolute vorticity stretching, since, in the presence of rotation, 
Kelvin's theorem applies to it. We recall that absolute vorticity is 
defined as ¢o + 2 ~ .  It was, thus, predicted that cyclonic and 
rapid anticyclonic rotation would inhibit three-dimensionalization 
and that the longitudinal stretching of absolute vortex lines would 
be the most efficient in regions were the span-wise absolute 
vorticity is weak, corresponding to a local Rossby = - 1. 

To confirm these p;redictions, we now present DNS at a 
(') a Reynolds number Re " = I U o I~/v = 50. Initially, low-ampli- 

tude random noise is superposed upon the basic velocity profiles. 
Two different types of perturbations are considered. First, a 
quasi-2-D one consisting of the superposition of a purely 2-D 
perturbation (z-independent) of kinetic energy ~2DUo z and a 3-D 
perturbation of energy E3DUg , with e2D = 10e319 = 10 -4. The 
perturbation peaks at the fundamental Kelvin-Helmholtz mode. 
This case is referred to as the "forced transition" case. The 
second type of perturbation considered is purely 3-D, with CaD = 
10 -4 and e2D = 0. The noise is now a white noise which does 
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Figure 12 Mix ing layer; relat ive vor t ic i ty  isosurfaces at t =  
1 7 . 8 ~ i / I  U0 I; (a) nonro ta t ing  case: co 2, l ight gray;  cot ( longi tudi-  
nal vort ic i ty)  colored by the sign of  co x, black co x < O, dark gray 
co x > O; (b) Rio il = - 1; (c) R~  I = - 5  ( f rom M~ta is  et al. 1995)  

not favor any mode, and the most amplified one can freely 
emerge: this case is called the "natural transition" case. 

Now we look at the 3-D flow structure in the forced transition 
case. We focus on the relative vorticity iso-surfaces at t = 
17.88i/[U0 [ obtained in the nonrotating case (R (/) = ~) and for 
anticyclonic rotation at R (/) = - 5 and R (/) = - 1. 
(1) R (/) = oo (Figure 12a). Here, we observe quasi-2-D Kelvin-  

Helmholtz billows, slightly distorted in the span-wise direc- 
tion. Weak longitudinal vortices are stretched between the 
primary rolls: they are visualized through isosurfaces of weak 
longitudinal vorticity. 

(2) R (O = - 1 (Figure 12b) displays the span-wise vorticity field 
with the same isocontour value as that in the nonrotating 
case. Anticyclonic and cyclonic flows are similar at this 
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(a) 

(b) 
X 

Figure 13 Mix ing layer; relat ive vor t ic i ty  isosurfaces at t =  
26 .8~ i / IUo l ;  (a) forced-transi t ion; (b) natural t ransi t ion;  to z, 
l ight gray; to I ( longi tudinal  vort ic i ty)  co lored by the sign of COx; 
black o~ x < O; dark gray to x > 0 

Rossby number, and a strong two-dimensionalization is ob- 
served in both cases. The longitudinal vortices have disap- 
peared. Furthermore, the two-dimensionalization tendency 
can be observed in the cyclonic case even for large positive 
R(o/). This agrees well with both the predictions of the linear 
stability analysis by Yanase et al. (1993). 

(3) R(~ ) = - 5  (Figure 12c). Kelvin-Helmholtz vortices are now 
highly distorted and exhibit strong oscillations along the 
span-wise direction. The longitudinal vorticity is much higher 
than in the nonrotating case: we observe the simultaneous 
formation of Kelvin-Helmholtz vortices and longitudinal 
hairpin vortices which are stretched between. As time goes 
on, this produces an important increase of the longitudinal 
vorticity component: by the end of the run the longitudinal 
vorticity is approximately twice that associated with the 
initial mean velocity profile. By the end of the run (Figure 
13a), the Kelvin-Helmholtz vortices have been totally dislo- 
cated, and the flow is entirely composed of hairpin-shaped 
longitudinal vortices. A similar sequence had been proposed 
in this case by Lesieur et al. (1991), using the weak absolute 
vorticity stretching mechanism: weak absolute vorticity in the 
stagnation region between the Kelvin-Helmholtz rollers 
would be stretched longitudinally between the latter, yielding 
longitudinal alternate vortices which should destroy the pri- 
mary vortices. It is worth noting that these vorticity structures 
originate from the growth of the longitudinal mode predicted 
by the linear stability analysis (see Yanase et al. 1993). 

The signature of this mode is even clearer when considering 
the natural transition case. In that case, the linear growth gives 
initially rise to absolute vortex lines oscillating along the span 
and in phase in the stream-wise direction. Afterward, we checked 
that the dynamics are dominated by a strong quasihorizontal 

stretching of weak absolute span-wise vorticity, still correspond- 
ing to the phenomenological theory of Lesieur et al. (1991). The 
isovorticity structures are completely longitudinal in that case 
(see Figure 13b), and exhibit some analogies with the G/Srtler 
vortices observed in the boundary layer over a concave wall. 
Solid body rotation, thus, yields a very efficient mechanism to 
create intense longitudinal vortices in rotating anticyclonic shear 
layers, thanks to a linear longitudinal instability followed by a 
vigorous stretching of absolute vorticity. 

Conclusion 

The present paper has focused on the dynamics of coherent 
vortices of various sizes, to which is associated a large part of 
heat and mass transfers in turbulent flows. Those are studied with 
3-D direct or large-eddy simulations. The turbulence considered 
is either isotropic, or submitted to a stable stratification (within 
the Boussinesq approximation), an inflectional shear (mixing 
layers and wakes), a separation, or a solid body rotation. 

We first presented the tools of LES for momentum and 
temperature. We recalled Smagorinsky's model, and introduced 
Kraichnan's spectral eddy-viscosity and diffusivity, involving a 
"plateau-cusp behavior." The latter is quite efficient if we can 
work in Fourier space. However, most industrial applications 
require to work in physical space. For this purpose, we show how 
a spectral eddy-viscosity (without cusp) may be implemented in 
physical space in terms of the second-order structure function of 
the velocity. This is the (SF) model, which yields very good 
results for isotropic turbulence. For all these three models 
(Smagorinsky, spectral cusp, and structure-function) we show 
that the constant may be adjusted in terms of the Kolmogorov 
constant, if we assume a Kolmogorov cascade in the subgrid 
scales. We also present the selective structure-function model, 
where the eddy-viscosity is turned on only when the flow is 
sufficiently 3-D, in the sense defined in the paper. We also 
briefly recall the main lines of the dynamic models, where a 
double filtering allows to recompute the constant of Smagorin- 
sky's model as a function of space and time. 

We discuss the coherent structures of 3-D isotropic turbulence 
convecting a passive temperature on the basis of DNS. Our 
simulations confirm earlier findings that these structures consist 
of thin tubes of high vorticity. We checked that they also 
correspond to low-pressure regions and that the pressure pdf has 
exponential-like distribution in the lows, while being Gaussian in 
the highs. This is related to the highly non-Gaussian wings found 
in the vorticity components distributions and might characterize 
the small-scale intermittency of turbulence. We have also found 
similar types of distributions for a passive temperature convected 
by the flow. This seems to be associated with an anomalous 
behavior (with respect to Corrsin-Oboukhov's law) of the scalar 
spectrum in the energetic scales, with a spectrum close to k-1 
and a spectral turbulent Prandtl number increasing from 0.3 to 
0.6 on the wave number span. All these anomalous temperature 
effects disappear when a stable stratification, even weak, is 
activated. 

Then, we considered a temporal wake forced by a quasi-2-D 
perturbation and compared the vortical structure obtained respec- 
tively with the structure-function and Smagorinsky's models (no 
molecular viscosity) and a DNS at the same resolution. In the 
first two models, longitudinal vortices much more intense than in 
the DNS are stretched. We also studied with the structure-func- 
tion model the spatially growing wake and the backward-facing 
step, and studied the primary and secondary vortex structure. It 
was shown that the LES preserve both the coherence of the 
primary vortices (Karman rollers; Kelvin-Helmholtz vortices) 
and the thin longitudinal hairpin vortices whose diameter is close 
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to the mesh size. Furthermore, the present computations have 
demonstrated that LES provide better statistics than the standard 
K -  • model for separated flows. 

The stratified back-step flow, with the top 80% of the inlet 
channel heated, was also looked at with the structure-function 
model: increasing the upstream global Richardson number R i 
shows how stratification two-dimensionalizes the flow and sup- 
presses longitudinal vortices. We have also carried out at R i = 0.7 
a comparison between the structure- and the selective structure- 
function models. It proves that the latter is much more sensitive 
to Kelvin-Helmholtz instability and allows for pairings in the 
early stage of evolution of the layer. 

Finally, we studied by DNS the influence of a solid body 
rotation upon a temporal mixing layer, with the rotation axis 
parallel to the basic vorlicity. The Rossby number R o is defined 
with the aid of the vorticity at the inflection point of the initial 
basic velocity profile, and may be positive (cyclonic rotation) or 
negative (anticyclonic). For R o/> 1, the mixing layer is two-di- 
mensionalized with respect to the nonrotating case, with a ten- 
dency to inhibit the longitudinal hairpin vortex stretching. This is 
in agreement with linear-stability analysis. For a moderate anti- 
cyclonic rotation on the: contrary (R o = 5), the mixing layer is 
disrupted into intense longitudinal alternate filaments of absolute 
vorticity stretched by the ambient shear. 

Contrary to direct numerical simulations, large-eddy simula- 
tions are, in principle, not limited to small values of the Reynolds 
number. Large-eddy simulation techniques have been used for 
more than 20 years in weather forecasting. More recently, the 
new subgrid-scale modeling methods, such as those presented in 
the present paper, combined with the tremendous development of 
computers have allowed us to demonstrate the applicability of 
LES to engineering flows. Originally limited to simple flow 
geometries, LES are now used for spatially growing shear or 
separated flows, pipe flows, flows around obstacles, and flows 
submitted to body forces. Both DNS and LES provide determinis- 
tic (such as coherent vorlices for instance) and statistical informa- 
tion about the flow. They constitute very good tools for assessing 
the validity of the existing one-point-closure models. Further- 
more, they could contribute to the development of a new genera- 
tion of industrial models incorporating the structural information 
of the LES. 
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